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PROXIMITY OF FIRMS TO SCIENTIFIC PRODUCTION

ANTONIN BERGEAUD a AND ARTHUR GUILLOUZOUICb

Following Bergeaud et al. (2022), we construct a new measure of proximity between
industrial sectors and public research laboratories. Using this measure, we explore
the underlying network of knowledge linkages between scientific fields and industrial
sectors in France. We show empirically that there exists a significant negative cor-
relation between the geographical distance between firms and laboratories and their
scientific proximity, suggesting strongly localized spillovers. Moreover, we uncover
some important differences by field, stronger than when using standard patent-based
measures of proximity.
JEL Codes: O32, O38, R12.
Keywords: Knowledge Spillovers, Technological Distance, Public Laboratories.

1. INTRODUCTION

Public research laboratories are often regarded as crucial building blocks in the ad-
vancement of new technologies. Since they are not primarily driven by immediate profit
motives like the corporate sector, they play an essential role in generating the scientific
knowledge then catalyzed by private innovation. There is compelling evidence in the liter-
ature that private firms benefit from academic research. For instance, studies by Azoulay
et al. (2019) and Bergeaud et al. (2022) indicate that innovative companies respond to
shifts in public research funding by enhancing their R&D effort and output, underscoring
the existence of spillovers. However, tracking these knowledge transfers is challenging
due to their varied nature, which can range from subcontracting and joint ventures to in-
formal discussions and seminars (see Cohen et al., 2002; De Fuentes and Dutrénit, 2012
for reviews).

In this paper, we assess potential spillovers from French universities to private sectors
and characterize their heterogeneity across various scientific domains. To do so, we rely
on and generalize the metric of firms’ proximity to science introduced by Bergeaud et al.
(2022)-initially in the context of evaluating a public research funding program. In partic-
ular, we relate this measure of potential knowledge spillovers to industries’ spatial con-
centration. We show a strong negative relationship between the spatial distance separating
firms and research labs and their scientific proximity. Delving into scientific disciplines,
we find that this pattern holds in most domains, but that magnitudes vary strongly.

The main novelty of the methodology introduced in Bergeaud et al. (2022) is its ability
to position each industry within the “scientific space” using a parsimonious set of data on
patenting and academic publications. We adopt their methodology and construct a prox-
imity measure that quantifies the likelihood that a firm in industry i draws upon a paper
produced by scientific laboratory l. This metric capitalizes on the vast, heterogeneous, and
specialized spectrum of academic journals, shedding light on both the typical publication
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outlets of researchers from laboratory l and the scientific sources that firms in industry i
rely upon for innovation. Concretely, a public laboratory l and an industry i are deemed
scientifically proximate if there exists an intersection between the set of academic jour-
nals where researchers from l predominantly publish and the journals frequently cited by
patents owned by firms in i. One significant advantage of this measure is its ability to cap-
ture spillovers without requiring direct ties between academic research outputs and firms’
patents, making it a more encompassing proximity metric between academia and industry
than the one usually proposed by the literature.

Employing this methodology, we are able to comprehensively map the potential knowl-
edge spillover network between every pair of laboratory and industry. This network serves
as a valuable resource for researchers aiming to examine the transmission of shocks be-
tween a public laboratory and the private sector via the exchange of ideas. To the best of
our knowledge, our study is the first to propose such an exhaustive overview across all
scientific fields and industrial sectors. Analyzing the structure of this network, we find
its organization quite intuitive. Two predominant poles emerge: on one side, laboratories
specializing in biology, medicine, and immunology closely align with the manufactur-
ing of chemicals and pharmaceutical products. Conversely, engineering and physics labs
demonstrate connections with aeronautics as well as electronic and telecommunication
equipment industries. Additionally, our findings uncover more nuanced relationships, es-
pecially highlighting the roles of mathematics, computer science, and social sciences.

The literature has emphasized a key empirical regularity regarding knowledge spillovers.
Regardless of their form, they are mostly concentrated locally and therefore the scientific
proximity is tied to the geographical proximity between laboratories and private indus-
tries (Abramovsky et al., 2007; Hausman, 2021; Jaffe, 1989). As our second contribution,
we thus compare our measure of scientific proximity with the geographical proximity and
show that on average, cities surrounding a laboratory tends to be more specialized in in-
dustries making use of the science produced by the laboratory. This finding supports the
view that geographical proximity matters for knowledge spillovers to occur. However, we
also show that there is a large heterogeneity across scientific fields. For example, we find
that for materials science, energy, computer science and mathematics, when the distance
increases by 1%, the concentration of exposed industries is lowered by 0.2 to 0.3%. In
contrast, we do not find any significant association for chemistry or pharmacology.

We then confront our exposure with alternative measures of exposure, more standard in
the literature because they are based on academic patents.1 Specifically, we build a prox-
imity measure comparing alternatively the patent classification IPC at either the 3-digits
or the 4-digits level, and the Google embeddings2 compositions of a public laboratory’s
patents on the one hand, and an industry on the other hand. We also use direct citations
of papers produced by a laboratory as an alternative measure of proximity. We show that
these alternative measures of spillovers produce noisier results and typically understate
the influence of specific scientific fields, such as mathematics, that are of high importance
to produce new technologies but are only rarely the object of a patent. Direct patent ci-
tations are an exception and show a strong association with industry concentration in all
disciplines, suggesting that, albeit rare, these are a strong signal of local spillovers.

1See for instance Akcigit et al. (2021); Hausman (2021); Henderson et al. (1998); Trajtenberg et al.
(1997).

2Srebrovic, 2019

106

This content downloaded from 
������������90.60.44.105 on Sat, 27 Apr 2024 18:32:59 +00:00������������ 

All use subject to https://about.jstor.org/terms



Antonin Bergeaud and Arthur Guillouzouic

Overall, our results confirm the relevance of this new measure of scientific proximity
between public research and the private sector and pave the way for new research exploit-
ing this network to better understand how firms draw their ideas and how government can
best design their R&D and industrial policies. It is an easy to build procedure to capture
spillovers, which allows overcoming the sparsity of direct citations found in patents.

Related literature.

The main contribution of our paper is to characterize the French innovation network
by looking at scientific relationships between firms and laboratories. The relevance of an
innovation network, whereby upstream discoveries influence downstream technologies,
has been the focus of several studies. For example, Acemoglu et al. (2016) use citations
between patents of different technological classes to map the innovation landscape in the
US. However, the structure of their network only allows for citations between patents and
therefore mostly concerns the private sector. Conversely, Fabrizio (2009) measures the
proximity of firms to universities using the number of academic papers co-published by
the two entities. Other papers have considered links from patents to academic articles by
exploiting flows of citations (Cristelli et al., 2020). This allowed researchers to emphasize
the fact that firms may differ in their reliance to science to develop their technologies and
how this may influence the nature of their innovation (Ahmadpoor and Jones, 2017; Marx
and Fuegi, 2020; Schnitzer and Watzinger, 2019).

While our approach also relies on such citations, we use a more indirect approach which
provides a more complete picture of the network that links research laboratories and pri-
vate industries. Indeed, our approach does not require existing links that are based on
flows of citations, but rather exploits the diversity and specificity of academic journal.
Thus, it aims at measuring the relevance of the science produced by a public lab for firms,
rather than actual links between these entities. It departs from the two different ways
through which the literature has approached this issue. One way has been to look at di-
rect connections between private patents and research output of public laboratories (e.g.
Azoulay et al., 2019). Another standard way has been to focus on academic patents, and
rely on the proximity between the patent technological classes in which firms and uni-
versities apply (see for instance Akcigit et al., 2021; Hausman, 2021; Henderson et al.,
1998; Trajtenberg et al., 1997). While patenting within academia has increased over time
in France (Carayol and Carpentier, 2021), it is known to capture only a small part of
all the knowledge produced by public labs (Agrawal and Henderson, 2002), making it
worthwhile to consider all the scientific production of academic units in their potential
spillovers.

Since we study the correlation between the scientific proximity and the geographical
distance between laboratories and firms, our paper also relates to a rich literature that
considers the spatial heterogeneity of innovative activities. Based on various data sources,
this literature has highlighted that innovative actors—firms, research laboratories, and uni-
versities but also specialized venture capital funds—are geographically organized around
clusters (e.g., Delgado et al., 2010; Hausman, 2021). As a result, the modern geography
of innovation is characterized by local specialization hubs (Buzard et al., 2017; Egger and
Loumeau, 2018) and by the existence of superstar cities that concentrate most innovation
(Carlino et al., 2007; Gyourko et al., 2013). This organization is beneficial for innovation
for at least two related reasons (Duranton and Puga, 2004). First, as explained previously,
distance matters for knowledge spillovers to materialize (Audretsch and Feldman, 1996,
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2004; Feldman and Kogler, 2010; Jaffe et al., 1993; Rosenthal and Strange, 2003) even
though these spillovers can take many forms that are more or less identified (see e.g., Ak-
cigit et al., 2021; Azoulay et al., 2019 and Aghion and Jaravel, 2015, for a review). The
role of distance probably stems from the importance of interactions between scientists,
engineers and technicians as a source of creativity (Lychagin et al., 2016) but also be-
cause subcontracting is an important channel of knowledge exchange between the public
and private sector (Bergeaud et al., 2022). The second reason relates to other types of ag-
glomeration effects, through which innovative activities benefit from being concentrated
because of a specialized local labor market and amenities that are useful and valued by in-
novators (Carlino and Kerr, 2015; Combes and Gobillon, 2015). One natural way to look
at these links is to use the network of citations across patents which has been shown to sig-
nal the existence of knowledge spillovers (Jaffe et al., 2000) and is often used to highlight
flows of ideas (e.g. Aghion et al., 2021; Cotterlaz and Guillouzouic, 2020; Maurseth and
Verspagen, 2002). Our approach does not require direct citations, and therefore allows us
to capture very flexibly a full range of spillovers from universities to private firms.

Finally, our paper has implications for the funding of innovation activities. While the
literature consensually establishes that public research funding stimulates private inno-
vation (e.g. Azoulay et al., 2019; Bergeaud et al., 2022; Fleming et al., 2019; Hausman,
2021; Henderson et al., 1998), we show that there is significant heterogeneity in terms
of the centrality of scientific fields. Such results are important in the design of an opti-
mal R&D and industrial policy that factors in the differential sectoral impacts of funding
specific public research.

The rest of the paper is organized as follows. Section 2 describes the construction of
our proximity measure and presents some descriptive facts about the underlying network.
Section 3 analyzes the correlation between the scientific proximity and the geographical
distance across subjects. Section 4 concludes.

2. DATA AND CONSTRUCTION OF THE PROXIMITY MEASURE

2.1. Baseline Scientific Proximity

We start by constructing the proximity measure between public laboratories and firms
as proposed in Bergeaud et al. (2022). The first source of data we use is scanR. scanR is
a tool developed by the French ministry of research and innovation (MESRI) that gathers
many different sources recording scientific activities of French public and private labs. It
provides information on the universe of research papers published by all universities and
public research centers in France, and on the journal j ∈ J in which they were published.

We further use the patCit database (Cristelli et al., 2020) to retrieve information on the
set of papers cited by patents owned by French firms. The patCit project is a collaborative
project which use natural language processing tools to retrieve citations included in the
text and in the frontpage of all patent publications. The dataset consists in a rich network
linking 7,718,253 patents and 3,338,231 distinct academic papers identified by their DOI.
On average, a patent cites 3 academic papers (conditional on being in the dataset, i.e.
on citing at least one academic paper). We considered any patent as long as the assignee
has been identified as a French firm and matched to our data, regardless on the patent
office. Finally, we use Crossref3 to match these DOIs to bibliographical information about

3Crossref is a not-for-profit membership organization established to manage scholarly digital content
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each article. Table A2 in the Appendix describes the number of papers cited by patents
observed in our database (that is, with a defined subject and associated to a Siren).

The first difficulty we face is to assign academic papers to a specific laboratory. Indeed,
a typical university is a collection of various research laboratories that work in different
scientific fields all located in the same area.4 There are many dependencies and overlaps
across entities in the French public research system, which makes it difficult to assign
papers over a period of time to one main stable structure. To circumvent this issue, we
define a public research laboratory as a combination of a city c and a research domain d.
We use a classification of research into 18 large domains5 that are manual aggregations of
the 352 subjects that are assigned by Crossref.6

This defines 1260 public laboratories l ∈ L that are located in 206 different cities. We
further restrict the sample by removing journals that are too generalist and laboratories
that are too small in terms of their number of publications. The procedure is described
in Appendix A. Ultimately, our final sample counts 370 laboratories that are matched to
firms in 145 5-digit industries (using the NACE classification).7

We then construct a measure of proximity as follows:

(1) prox(l)
i =

∑
j∈J

ηl,jγj,i,

where ηl,j is the share that journal j represents in the publications by laboratory l between
2013 and 2020 and similarly, γj,i is the share the patents owned by firms in industry
i in overall patent citations of publications in journal j. In other words, this proximity
measure combines the probability that a lab l produces knowledge in a given journal j
with the probability that an industry i cites a paper in such journal j, and sums this over
all journals. We consider patents first filed before 2018. These shares are such that:∑

i∈I

γj,i = 1 and
∑
j∈J

ηl,j = 1

through Digital Object Identifiers (DOIs). It facilitates the registration of DOIs for academic publications
and other research outputs to ensure consistent referencing and linking across different platforms. Beyond
its core function of DOI registration, Crossref also provides tools and services for metadata retrieval and
content tracking.

4Whenever several affiliations corresponding to several cities are found, we use a fractional count ap-
proach.

5These domains are Agriculture, Arts and Humanities, Business, Chemistry, Computer Science, Energy,
Engineering, Environmental Science, Immunology and Microbiology, Materials Science, Mathematics,
Medicine/Dentistry, Neuroscience/Psychology, Nursing/Paramedical, Pharmacology, Physics and Astron-
omy, Social Sciences and a last domains for all other fields. See Appendix A.2 for more details.

6This means that in some cases, we may merge different universities into a given entity if two different
universities are located in the same city and work on the same domain. This will be essentially an issue in
large cities such as Paris. We check that our results are not affected by removing the Paris area from the
sample, see Section 3.4.

7The reduction in the number of labs might seem significant, as it represents 70% of the observations
(though only 17% of the total number of papers). In reality, most of the laboratories that are removed
have fewer than 10 papers (62%), and 25% have only one paper. These small laboratories likely cor-
respond to smaller research groups or may simply result from errors in the affiliation or subject. They
are over-represented in the subject categories “Arts and Humanities”, “Others”, “Energy”, and “Nurs-
ing/Paramedical.”
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Interpretation.

Following the argument presented by Bergeaud et al. (2022), the metric prox(l)
i quan-

tifies the degree to which a specific industry, denoted as i, draws its knowledge from a
similar scientific domain as that typically produced by laboratory l. Conditional on publi-
cations in a given scientific journal being sufficiently homogeneous, this metric essentially
represents the likelihood that a paper, when published by lab l, aligns with the knowledge
requirements of industry i. Consider, for instance, a laboratory dedicated to nanotechnol-
ogy research; it is poised to publish in a distinct set of journals that precisely demarcate its
research focus. If a patent from a firm frequently cites ideas from these specific journals,
then we would assign a strong proximity between the firm’s industry and the given labo-
ratory. It is then possible to gauge the potential impact or relevance of a lab’s total output
for industry i by simply multiplying this prox(l)

i by the lab’s total number of published
papers.

2.2. Description of the Measure

Table I identifies the 20 pairs of industry i and scientific domains d that have the highest
average proximity. Formally, we calculate:

prox(d)
i =

 ∑
l∈L(d)

Nl

−1 ∑
l∈L(d)

prox(l)
i · Nl,

where L(d) is the subset of laboratories in L which corresponds to a domain d, and Nl

is the number of papers from lab l. This formula simply calculated the average proximity
of each scientific field d, weighting by the relative size of each laboratory. Therefore, it
is simply a way to map the formula described in equation (1) at the industry × domain
level. We can see that some industries appear several times, such as “Manufacture of
perfumes and grooming preparations” and “Manufacture of air and spacecraft and related
machinery”, which results from their high centrality and reflects the fact that they are
tightly connected to different scientific fields, as well as their size in the French economy.
In terms of scientific fields, while some fields appear more frequently than others (e.g.
“Materials science”), strong links are relatively well spread across fields as 11 different
fields appear among the top 20 links. Other sensible links appear, for example laboratories
in the field of agriculture are strongly connected with the manufacture of bread and pastry.

Network representation.

In order to better understand the proximity measure, we use it to define links in a net-
work of connections. Indeed, the matrix of proximities prox(l)

i between industries and
laboratories can be seen as a weighted directed graph summarizing the potential transfers
of knowledge from laboratories to industries.8 A first way to gauge the credibility of our
proximity measure is to (visually) observe the extent to which labs of the same scien-
tific field tend to cluster in space, meaning that they are linked with similar intensities to

8To spatialize the network, we use a standard force-based layout algorithm, ForceAtlas, which is built-in
in the software Gephi.
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TABLE I
TOP 20 INDUSTRIES AND SUBJECTS IN TERMS OF AVERAGE LAB PROXIMITIES

Subject Industry Av. proximity

Energy Manufacture of scientific and technical instruments 2651B 0.439
Physics and Astronomy Manufacture of air and spacecraft and related machinery 3030Z 0.260
Computer Science Manufacture of aid to navigation equipment 2651A 0.221
Chemistry Manufacture of perfumes and grooming preparations 2042Z 0.218
Immunology and Microbiology Manufacture of pharmaceutical preparations 2120Z 0.196
Agriculture Industrial manufacture of bread and fresh pastry 1071A 0.178
Pharmacology Manufacture of perfumes and grooming preparations 2042Z 0.162
Immunology and Microbiology Manufacture of perfumes and grooming preparations 2042Z 0.152
Materials Science Manufacture of electronic components 2611Z 0.109
Pharmacology Manufacture of pharmaceutical preparations 2120Z 0.105
Materials Science Manufacture of aid to navigation equipment 2651A 0.102
Medecine/Dentistry Manufacture of pharmaceutical preparations 2120Z 0.101
Computer Science Manufacture of air and spacecraft and related machinery 3030Z 0.101
Materials Science Manufacture of air and spacecraft and related machinery 3030Z 0.0980
Medecine/Dentistry Manufacture of perfumes and grooming preparations 2042Z 0.0954
Engineering Manufacture of air and spacecraft and related machinery 3030Z 0.0930
Physics and Astronomy Manufacture of electronic components 2611Z 0.0837
Neuroscience/Psychology Manufacture of perfumes and grooming preparations 2042Z 0.0725
Engineering Manufacture of electricity distribution and control apparatus 2712Z 0.0720
Materials Science Manufacture of glasses 3250B 0.0714

Notes: This table shows the top 20 links between subjects and industries in terms of average proximity
across labs. Sources: scanR, patCit, Patstat.

similar industries.
Results are presented in Figure 1. Industries in the network are depicted as light gray

dots, whose size reflects (not proportionally) their stock of patents. Similarly, labs are rep-
resented as colored dots according to their scientific subject, and the size of dots reflects
(not proportionally) the number of papers they published. Only the labels of the industries
benefiting from the largest overall proximities are displayed on the network for the sake
of clarity.

We can already draw several conclusions from the relative position of labs in this graph.
First, it appears very clearly that labs in a same subject (dots of a same color) tend to
cluster in the same area, meaning that the composition of their proximities are relatively
similar. It is important to note that this is not an a priori feature of the graph but results
from the fact that these laboratories publish in similar academic journals. Second, the
graph is generally oriented along a West–East axis: the eastern end contains mostly med-
ical and health related labs, while the western end is mostly populated by engineering,
physics and computer science labs. In the center of the network, clusters of labs in energy,
environmental science, materials science and mathematics are closer to the engineering
pole, while chemistry, agriculture and neuroscience specialties are closer to the medical
eastern pole. Chemistry has a peculiar position, as it is much more spread out than other
disciplines, and that some labs seem much closer to the medical pole, while others are
closer to the center of the graph and to labs in physics.
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The position of industries relative to labs also appears quite intuitive. In the middle of
the medical eastern pole of the network are three very large industries: the production of
perfumes and toiletry, the production of pharmaceutical products, and the production of
medical equipment. These are quite central within the medical pole, which reflects the
fact that they draw knowledge from many different subjects: medicine, chemistry, micro-
biology and pharmacology. Some industries are closer to labs in one specific subject: the
manufacture of industrial gases is tightly related to medicine, the growing of grapes is in-
terestingly much closer to immunology and medicine than to agriculture, the manufacture
of essential oils is closest to chemistry, the manufacture of bread and of food products are
closest to labs in agriculture. In the engineering/physics western pole, we also observe
very large industries being located in the center of the pole and therefore benefiting from
physics, mathematics, computer science and engineering, such as navigation equipment,
the aeronautical industry, and the electric industry. Finally, industries located close to the
center of the network are interesting cases as well: the manufacture of glasses and of
rubber are between the medical and the engineering poles, which probably benefit both
from knowledge coming from engineering and from knowledge stemming from research
in chemistry. The periphery of the network also includes generalist industry codes, such
as technical analyses and testing, engineering and technical studies, manufacture of sci-
entific instruments, etc.

Centrality and clustering measures.

To give more quantitative sense of the results previously described, we run a simple
k-means clustering algorithm on the network and report the outcome in Table II where
we used k = 5. k-means clustering aims at creating a partition of a network made of
k clusters by minimizing the within cluster variance of the weighted adjacency matrix,
where in our case, weights are proximities. This partition is constructed without any prior
but as shown in Table II, the corresponding scientific fields composition of each cluster
echoes what can be visually assessed in Figure 1.

In particular, the first cluster corresponds to the medical pole of the network, as it is
composed almost entirely of labs in chemistry, immunology, medicine and pharmacol-
ogy. The second cluster is centered around agriculture. The third cluster corresponds to
what we called the engineering pole previously, and contains almost all the labs in physics,
computer science, materials science and engineering. A fourth cluster contains labs in en-
ergy and environmental science. Finally, a fifth group emerges with miscellaneous fields.
Overall, this exercise of k-means clustering confirms the interpretation which could be
made from the visual inspection of Figure 1.

Finally, Table B1 in Appendix B presents various aggregate measures of centrality by
subject. Consistently with Figure 1, we observe that chemistry and physics are the two
fields with the highest level of centrality, which means that they are closely connected
with a wider range of different industries. Indeed, chemistry will impact at the same time
industries related to the manufacture of pharmaceutical products and manufacturing in-
dustries such as metallurgy.
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TABLE II
CLUSTERING

Subject Cluster Nbr of labs Share of subject
in cluster in cluster

Cluster 1
Chemistry 1 83 28.8%
Immunology and Microbiology 1 79 27.4%
Medicine/Dentistry 1 65 22.6%
Pharmacology 1 41 14.2%
Agriculture 1 12 4.2%
Neuroscience/Psychology 1 5 1.7%

Cluster 2
Agriculture 2 36 85.7%
Nursing/Paramedical 2 5 11.9%
Environmental Science 2 1 2.4%

Cluster 3
Physics and Astronomy 3 66 30.0%
Computer Science 3 63 28.6%
Materials Science 3 45 20.5%
Engineering 3 38 17.3%
Mathematics 3 8 3.6%

Cluster 4
Energy 4 27 67.5%
Environmental Science 4 11 27.5%
Computer Science 4 1 2.5%
Chemistry 4 1 2.5%

Cluster 5
Environmental Science 5 79 17.8%
Social Sciences 5 61 13.7%
Medicine/Dentistry 5 61 13.7%
Mathematics 5 53 11.9%
Engineering 5 45 10.1%
Neuroscience/Psychology 5 43 9.7%
Nursing/Paramedical 5 42 9.4%
Agriculture 5 28 6.3%
Materials Science 5 9 2.0%
Chemistry 5 8 1.8%

Notes: This table shows the results of the k-means clustering algorithm using 5 clusters
on the lab–industry network. Only subjects with more than 1% of total cluster share are
presented. Sources: scanR, patCit, Patstat.

114

This content downloaded from 
������������90.60.44.105 on Sat, 27 Apr 2024 18:32:59 +00:00������������ 

All use subject to https://about.jstor.org/terms



Antonin Bergeaud and Arthur Guillouzouic

3. SCIENTIFIC PROXIMITY AND GEOGRAPHICAL DISTANCE

3.1. Aggregation of the proximity measure

The central goal of the paper is to show how scientific proximity, as captured by the
measure introduced above, depends on geographic distance. Such analysis requires a
mapping between indsutries and spatial units that we build using a measure of the con-
centration of industry i in each city c.9 We use the business register of establishments
(“Répertoire SIRENE”) and compute the share of plants in industry i located in city c,
which we denote wi,c.

From this, we construct a measure of the technological proximity between each pairs of
city c and c′ as:

A(c, c′) =
∑
l∈L

1 [c(l) = c]
∑
i

prox(l)
i wi,c′ ,

where c(l) denotes the city in which laboratory l is located. Said differently, we sum the
total spillovers received by firms in all industry and located in city c′ from all laboratories
located in city c and weight this sum by the share of industry i in c′.

We also construct a similar measure but restricting to each scientific domain d:

A(d)(c, c′) =
∑
l∈L(d)

1 [c(l) = c]
∑
i

prox(l)
i wi,c′ .

This measure will be high for pairs of cities c, c′ such that city c′ has a high share
of economic sectors which use the same science as the one produced by the laboratory
located in city c. Of course, A(d)(c, c′) is likely to reflect the fact that both technology
intensive industries and public research laboratories are more likely to be concentrated
in dense urban areas. This would increase the measure of the technological proximity
between two cities c and c′ but for reasons unrelated to actual knowledge spillovers from
the university to the private firms.

We thus construct counterfactual weights wi,c′ that would reflect the share of industry
i in city c′ if the spatial distribution of industries was random, keeping the same number
of establishments in each city.10 Using these weights, we construct an alternative measure
B(d)(c, c′) that we will use as a control variable. This is akin to the “dartboard” approach
introduced by Ellison and Glaeser (1997), with the exception that we resample only the
industries which have a non-zero scientific proximity.

For each city c′, we construct the total exposure received from laboratories in a given
scientific domain d by summing over the values of A(d)(c, c′) for all c, where c denotes
the location of a laboratory.11

This defines our dependent variable, which we denote a(d)c′ , as the log of total proxim-
ity to scientific labs in domain d. We proceed similarly for the counterfactual B(d)(c, c′)

9We consider “intercommunalité” as our measure of city. These are a larger entities than “communes”
which are on average very small (around 36,000 communes and 1250 intercommunalité).

10We only randomize the location of establishments that are in an industry with at least one positive
proximity and kept other establishments is their actual location.

11In the baseline, we do not weight the observation in taking the sum. One alternative would be to weight
this sum by the number of papers published by laboratories l located in city c and in field d to take into
account that larger laboratories are likely to generate more spillovers. This only marginally impacts our
result, see Figure B1 in Appendix B.
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Proximity of Firms to Scientific Production

and use the corresponding logarithm of the unweighted sum bc′ as a control variable. As
explained above, this controls for the potentially endogenous location of some specific
industries and laboratories. Finally, we also control for the logarithm of the population of
city c′, pc′ .

The independent variable of interest is the weighted average geographical distance with
nearby laboratories working on subject d that we denotes δc′ . We only consider labora-
tories located less than 100km away as a baseline and use the number of papers they
publish as weights. Section 3.4 explores how our results are affected by these choices. We
therefore estimate the following model for all cities c′ (around 1200 observations):

(2) a
(d)
c′ = αdb

(d)
c′ + βdδc′ + γdpc′ + ε

(d)
c′ ,

where ε(d)c′ is an error term which is allowed to be heteroskedastic.
We estimate equation (2) for each scientific domain d, and collect the estimated value

of βd as well as its standard errors. βd captures the strength of the link between scientific
and geographical proximity. The more negative βd, the more industries are concentrated
around labs with which they are technologically close.12

3.2. Results

Figure 2 plots the value of βd for each scientific discipline d, when estimating regres-
sion (2). It shows that disciplines which have the highest concentration of technologically
close industries located around them include many of the disciplines which appeared in
the second cluster in the network analysis, namely materials science, computer science,
mathematics, physics and to a lesser extent engineering. Thus, an important feature of our
measure is its ability to detect concentration around disciplines which produce primarily
basic knowledge and therefore probably issue few patents directly, although they publish
knowledge in journals which are cited by private sector patents. Energy and environmen-
tal science, which were grouped in the fourth cluster in the network analysis, also appear
to have a high extent of concentration of affected industries around them.

An important takeaway of this analysis is however that, with the notable exceptions of
nursing research (which is fairly small discipline) and immunology/microbiology, labs in
the medical and chemical areas (medicine and dentistry, neuroscience and psychology)
are not located next to industries which are close technologically. This is in contrast with
a part of the literature arguing that effects of university research on the private sector are
particularly strong in these areas (Abramovsky and Simpson, 2011; Abramovsky et al.,
2007; Azoulay et al., 2019). This contrast could stem from the specific geography of in-
novation in this industry in France or reflect the the fact that, while strong, these spillovers
are not localized. In any case, reconciling our results with insights from the previous lit-
erature is an interesting avenue for further research.

3.3. Comparing with other measures

We now examine how the results change when we use alternative measures of proxim-
ity. The literature typically looks at more direct connections between private patents and

12To get a sense of what the regression is capturing, we map the value of a(d)c − b
(d)
c for all cities c for the

scientific field Materials Science in Figure B3 along with the location of laboratories in this same domain.
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Figure 2: Correlation between scientific proximity and geographical distance, by field
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Notes: This figure plots the coefficients and confidence intervals of a linear regression run by scientific
field of equation (2). Sources: scanR, patCit, Patstat.
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Proximity of Firms to Scientific Production

research output of public laboratories (e.g. Azoulay et al., 2019). One natural way to look
at these links is to use the network of citations across patents which has been showed to
signal the existence of knowledge spillovers (Jaffe et al., 2000) and is often used to high-
light flows of ideas (e.g. Aghion et al., 2021; Cotterlaz and Guillouzouic, 2020; Maurseth
and Verspagen, 2002).

In our case, however, constructing such measures of proximity between industries and
laboratories is challenging for two main reasons. First, it requires identifying the list of
patents published by researchers in each laboratories. Second, it is likely that these patents
receive few citations from patents filed by French firms, making the citation network very
sparse and noisy.

Regarding the first challenge, we select patents whose assignee in scanR is a French
university. However, universities typically contain many different laboratories that work
on various topics and it is impossible to match each patent to a specific laboratory. Con-
versely, a given laboratory can belong to different universities. Just as we did previously,
we would like to define a laboratory as a pair of city and scientific domain. Yet, we cannot
use the publication of academic articles to assign a domain as we only have informa-
tion on the patents produced by the laboratory. One natural approach would be to use the
IPC (International Patent Classification) classes that split patents into different categories
based on the type of technology and techniques that they cover. However, IPC classes are
very different in nature from scientific fields and are impossible to match with our list of
18 subjects. We therefore proceed differently and match patents to fields based on a list
of keywords defining the scientific subjects and mentioned in the patents. More details
are given in Appendix A.3. At the end of the procedure, we define 470 laboratories in 93
cities.

Regarding the second challenge, we start by calculating the number of citations received
by each laboratory from patents filed by French firms. We found 1468 links between
industries and laboratories (63 industries and 396 laboratories).

Given the scarcity of direct links, we complete our analysis by relying on more indirect
alternative measures of proximity between industries and laboratories that are based on the
similarity of their respective patent portfolios. We consider 3 such measures of proximity:
first we use the correlation between the average embedding representation of all patents
filed by each laboratory and each industry.13 Second, we construct a distance based on
the similarity between the sets of IPC classes that appear in all patents filed by industries
and all patents filed by laboratories. Our proximity thus maximizes if two entities filed
patents in the exact same sets of IPC classes with the exact same weights. We use 3-digit
IPC classes and also experiment with 4-digit IPC classes.

In all cases, we follow the same methodology as in 2.1 but replace the value of prox by
each of these new alternative measures.

13See Bergeaud et al. (2022) for more details on embedding representations of patents. Formally, the
text of each patent is represented by a real vector of 64 dimensions constructed such that the dot product
between the embedding of two different patents measure their similarity (in the sense that they are more
likely to share the same technology classes, see Srebrovic, 2019). Our measure of proximity is thus simply
the dot product between the average embedding vector of all patents filed by each firms in a given industry
and the average embedding vector of all patent filed by each laboratory.
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Figure 3: Correlation between alternative proximities and geographical distance, by field
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Notes: This figure plots the coefficients and confidence intervals of a linear regression run by scientific
field of equation (2) using 4 alternative measures of proximities as defined in Section 3.3. Sources: scanR,
patCit, Patstat.

Results.

Results are presented in Figure 3 which, as in Figure 2, presents the coefficient βd

along with their 95% confident intervals for each domain—and for each of our 4 alter-
native measures. We can make several observations from this Figure. First, applying the
same procedure as the one described in Section 3.1 only allows to identify a coefficient
for 11 subjects. This highlights the broad coverage of the innovation network allowed by
our main proximity measure which is one of its key advantages. Second, for the measures
based on 3 or 4 digit IPC and the embedding proximity, the correlation with distance is
always very small especially compared to the baseline. Third, the results using direct cita-
tion links is very strong in the sense that the correlation with distance is always negative,
of a similar order of magnitude than the baseline but at the same time not very precisely
estimated and without any significant differences across subjects. Moreover, this result
is expected in the sense that the flows of citations between patents only transcribe the
existence of concrete links between entities, which naturally increases the probability of
colocation. We view these results as evidence that our baseline measure of proximity is
better at capturing actual spillovers.
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3.4. Robustness

In this section, we estimate equation (2) but with alternative constructions of the depen-
dent variable a, and as a result of b, or on a restricted sample to assess the robustness of
our results.

Our first robustness check is to change the criteria we apply to select journals based on
how general they are. In the baseline model, we calculate for each journal the Herfindahl-
Hirschmann Index (HHI) across these 18 scientific fields by counting the number of pa-
pers in each field. We remove any journal with a HHI lower than 0.5 which we consider as
too generalist or multidisciplinary. In this section, we look at what happens if this thresh-
old is reduced to 0.3 (allowing for more journals) or increased to 0.7. These tests are
referred to as “Herf 30” and “Herf 70” respectively.

As another robustness test, we change the threshold distance value of 100km that we
use to calculate the average distance dc′ . This threshold is changed to 50 and to 150 and
the tests are respectively denoted “Dist 50” and “Dist 150”.

We also change the sample by including journals that have only one relationship to an
industry (“All links”), by including the R&D sector (“Inc. 72”), by having a minimum
size of labs of 50 rather than 100 papers (“Labsize 50”), by considering the closest lab
rather than the average (“Min dist”), and by removing the Paris area (“Remove paris”).

Figure 4 shows the results of submitting our baseline analysis to this battery of robust-
ness tests. Figure B2 in Appendix B presents the results separately. Overall, a notable
feature of this exercise is that the estimated coefficients are negative in the vast majority
of the cases. The fields which display the greatest concentration around them (energy,
mathematics, computer science, physics, nursing) are very robust to changes in the vari-
ous thresholds we impose through the procedure, which supports the idea that our baseline
result is not very sensitive. The rest of the fields tend to be associated with negative but
smaller coefficients in absolute terms and often insignificant, confirming that there is little
excess concentration of close industries around those labs. Finally, a coefficient associated
to social sciences is only estimated under some of the scenarios, and takes very volatile
values.

4. CONCLUSION

In this paper, exploiting the methodology proposed in Bergeaud et al. (2022), we con-
struct a measure of scientific distance between public research laboratories and private
firms in France. Based on this measure, we build the network linking industries and sci-
entific fields. In the process, we document the existence of clusters in which scientific
information circulates, around large themes such as medical applications or agriculture.
An interesting feature of our results is to show the importance of fields, such as math-
ematics, that tend not to patent and yet produce knowledge that is used by firms. Such
proximities cannot be captured by more traditional measures, in particular those based on
academic patents.

The main contribution of the paper is to show a strong link between scientific and ge-
ographic proximity. Interestingly the strength of this correlation very much depends on
the scientific field in which laboratories publish. It is very strong for material science
or computer science, but rather loose for chemistry and medical science. This could be
reflecting the fact that different channels underly spillovers depending on the academic
subject. Indeed, some channels such as research subcontracting do not necessarily require
the firm and the lab to be located close to each other, while others such as labor mobility
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Figure 4: Robustness tests on the correlation between scientific proximity and geographical distance, by
field
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field of equation (2), for many different sample restrictions and sensitivity checks. Sources: scanR, patCit,
Patstat.
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are arguably more local. Explaining the source of this heterogeneity across fields will be
an interesting avenue for future research.

APPENDIX A: DATA APPENDIX

A.1. Data cleaning for baseline measure

Our initial data comes from ScanR and contains 324,050 different papers (with a non empty doi and
an author that is geolocated) published in 13,033 journals between 2013 and 2021 by a French public en-
tity. A large share of these journals are small (for example proceedings of a conference) some are very
specialized and other more generalist. We use the API provided by Crossref to assign each paper a sci-
entific field. The main classification counts 352 subjects and we manually aggregate these subjects into a
broader category of 18 groups: Agriculture, Arts and Humanities, Business, Chemistry, Computer Science,
Energy, Engineering, Environmental Science, Immunology and Microbiology, Materials Science, Mathe-
matics, Medicine/Dentistry, Neuroscience/Psychology, Nursing/Paramedical, Pharmacology, Physics and
Astronomy, Social Sciences and an additional group for all other fields. The detailed composition of each
of these 18 subjects is given in Section A.2.

From this, we proceed to a number of cleaning steps. The corresponding number of papers in each field
is given in Table A1, starting from Step 1 which corresponds to the output from Crossref. We first calculate
an index of specialization for each journal, defined as the Herfindahl-Hirschmann Index (HHI) across these
18 scientific fields. We remove any journal with a HHI lower than 0.5 which we consider as too generalist
or multidisciplinary to help identifying a laboratory. This leaves 11,346 journals (Step 2).

On the private sector side, we start from 24,112 patents filed by 1,599 firms between 2000 and 2015.
These patents cite 42,324 different papers that are published in 4,736 journals. We remove single relation-
ships (industries cited only by 1 journal), generalist journals (from the HHI) and public sector as well as
2-digit industry 72 (R&D) and some specific industries such as holdings. At the end, our working database
counts 3,239 journals and 179 industries (Step 3).

We further remove laboratories with less than 100 papers and subjects that have an aggregate proximity
below 1.This in particular leaves out three subjects: Arts and Humanities, Business and Other. Merging all
this together yields 12,305 relationships between 370 labs and 145 industries (Step 4).

A.2. Building larger subjects

This section describes the 18 scientific subjects used in the analysis by listing the Crossref fields included
in each of them.

Agriculture:

“Agricultural and Biological Sciences (miscellaneous)”, “Agronomy and Crop Science”, “Animal Sci-
ence and Zoology”, “Aquatic Science”, “Developmental Biology”, “Ecological Modeling”, “Ecology”,
“Equine”, “Evolution”, “Food Animals”, “Food Science”, “Forestry”, “Agricultural and Biological Sci-
ences”, “Horticulture”, “Insect Science”, “General Agricultural and Biological Sciences”, “General Veteri-
nary”, “Plant Science”, “Small Animals”, “Structural Biology”, “Veterinary (miscellaneous)”

Arts and Humanities:

“Arts and Humanities (miscellaneous)”, “Classics”, “Cultural Studies”, “General Arts and Humanities”,
“History and Philosophy of Science”, “Library and Information Sciences”, “Literature and Literary The-
ory”, “Museology”, “Philosophy”, “Speech and Hearing”, “Visual Arts and Performing Arts”

Business:

“Accounting”, “Business”, “Business and International Management”, “Communication”, “General Busi-
ness”, “Human Factors and Ergonomics”, “Leadership and Management”, “Leisure and Hospitality Man-
agement”, “Management”, “Management Science and Operations Research”, “Management and Account-
ing”, “Management and Accounting (miscellaneous)”, “Management of Technology and Innovation”, “Mar-
keting”, “Media Technology”, “Organization”, “Organizational Behavior and Human Resource Manage-
ment”, “Planning and Development”, “Strategy and Management”
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TABLE A1
NUMBER OF PAPERS IN SCANR DATABASE BY SUBJECTS AFTER EACH CLEANING STEP

Subject Cleaning Steps

Step 1 Step 2 Step 3 Step 4

Agriculture 16,991 10,078 9,988 7,158
Arts and Humanity 1,108 855 - -
Business 4,047 2,824 1,440 -
Chemistry 45,689 29,332 29,309 26,358
Computer Science 13,359 9,274 9,234 6,775
Energy 4,352 3,175 3,136 1,600
Engineering 24,600 13,739 13,659 10,332
Environmental Science 25,356 15,818 15,605 12,405
Immunology and Microbiology 22,527 16,115 16,087 12,686
Materials Science 12,407 4,497 4,426 2,537
Mathematics 12,511 9,609 9,529 7,201
Medicine/Dentist 65,024 59,677 59,463 55,552
Neuroscience/Psychology 9,689 6,891 6,824 5,017
Nursing/Paramedical 4,321 3,838 3,617 1,719
Others 1,856 871 754 -
Pharmacology 6,358 4,314 4,280 2,113
Physics and Astronomy 39,127 28,274 28,234 26,116
Social Sciences 13,716 11,119 10,523 8,281

Total 323,034 230,296 226,106 185,850
Notes: Number of academic papers published in journals by each of the 18 scientific
fields after each of the cleaning steps described in Section A.1.

Chemistry:

“Analytical Chemistry”, “Bioengineering”, “Biochemistry”, “Biochemistry (medical)”, “Biophysics”,
“Catalysis”, “Chemical Engineering (miscellaneous)”, “Chemical Health and Safety”, “Chemistry (mis-
cellaneous)”, “Clinical Biochemistry”, “Coatings and Films”, “Colloid and Surface Chemistry”, “Electro-
chemistry”, “Environmental C”, “Environmental Chemistry”; “Filtration and Separation”, “Fluid Flow and
Transfer Processes”, “General Biochemistry”, “General Chemical Engineering”, “General Chemistry”, “In-
organic Chemistry”, “Materials Chemistry”, “Organic Chemistry”, “Physical and Theoretical Chemistry”,
“Polymers and Plastics”, “Process Chemistry and Technology”, “Spectroscopy”

Computer Science:

“Artificial Intelligence”, “Computer Graphics and Computer-Aided Design”, “Computer Networks and
Communications”, “Computer Science (miscellaneous)”, “Computer Science Applications”, “Computer
Vision and Pattern Recognition”, “General Computer Science”, “Human-Computer Interaction”, “Mod-
eling and Simulation”, “Signal Processing”, “Software”, “Theoretical Computer Science”, “Information
Systems”, “Information Systems and Management”, “Management Information Systems”

Environmental Science:

“Atmospheric Science”, “Computers in Earth Sciences”, “Conservation”, “Earth and Planetary Sciences
(miscellaneous)”, “Earth-Surface Processes”, “Ecological Modeling”, “Ecology”, “Economic Geology”,
“Environmental Engineering”, “Environmental Science (miscellaneous)”, “General Earth and Planetary
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TABLE A2
NUMBER OF PAPERS CITED IN THE PATENT DATABASE, BY SUBJECT

Subject Nbr of papers

Agriculture 1,508
Arts and Humanity 113
Business 237
Chemistry 7,604
Computer Science 2,439
Energy 312
Engineering 3,385
Environmental Science 615
Immunology and Microbiology 6,513
Materials Science 908
Mathematics 329
Medicine/Dentist 8,073
Neuroscience/Psychology 789
Nursing/Paramedical 577
Others 51
Pharmacology 2,646
Physics and Astronomy 1,683
Social Sciences 173

Total 40,376
Notes: Number of academic papers by subject in the fi-
nal database on the patent side, i.e. the patCit database
merged with firm identifiers and subjects. The count is
a fractional count (papers associated to several subjects
are split).

Sciences”, “General Environmental Science”, “Geography”, “Geology”, “Geophysics”, “Geotechnical En-
gineering and Engineering Geology”, “Global and Planetary Change”, “Nature and Landscape Conserva-
tion”, “Ocean Engineering”, “Oceanography”, “Pollution”, “Soil Science”, “Sustainability and the Envi-
ronment”, “Water Science and Technology”

Energy:

“Energy (miscellaneous)”, “Energy Engineering and Power Technology”, “Fuel Technology”, “General
Energy”, “Geochemistry and Petrology”, “Nuclear Energy and Engineering”, “Renewable Energy”

Engineering:

“Automotive Engineering”, “Biomedical Engineering”, “Architecture”, “Building and Construction”,
“Civil and Structural Engineering”, “Control and Optimization”, “Control and Systems Engineering”, “Elec-
trical and Electronic Engineering”, “Electronic”, “Engineering (miscellaneous)”, “General Engineering”,
“Hardware and Architecture”, “Industrial and Manufacturing Engineering”, “Instrumentation”, “Mechan-
ical Engineering”, “Sensory Systems”, “Surfaces”, “Surfaces and Interfaces”, “Transportation”, “Waste
Management and Disposal”

Immunology and Microbiology:

“Immunology”, “Immunology and Allergy”, “Immunology and Microbiology (miscellaneous)”, “Epi-
demiology”, “Genetics and Molecular Biology”, “Genetics and Molecular Biology (miscellaneous)”, “Ap-
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plied Microbiology and Biotechnology”, “Biotechnology”, “Cell Biology”, “Infectious Diseases”, “Micro-
biology”, “Microbiology (medical)”, “Molecular Biology”, “Molecular Medicine”, “Parasitology”, “Virol-
ogy”, “General Immunology and Microbiology”

Materials Science:

“Biomaterials”, “General Materials Science”, “Materials Science (miscellaneous)”, “Metals and Alloys”,
“Optical and Magnetic Materials”, “Mechanics of Materials”, “Ceramics and Composites”

Mathematics:

“Algebra and Number Theory”, “Analysis”, “Applied Mathematics”, “Computational Mathematics”, “Com-
putational Theory and Mathematics”, “Discrete Mathematics and Combinatorics”, “General Mathematics”,
“Geometry and Topology”, “Logic”, “Mathematics (miscellaneous)”, “Numerical Analysis”, “Probability
and Uncertainty”, “Statistics”, “Statistics and Probability”

Medicine/Dentistry:

“Aging”, “Anatomy" "Assessment and Diagnosis”, “Cancer Research”, “Cardiology and Cardiovascu-
lar Medicine”, “Chiropractics”, “Complementary and Manual Therapy”, “Complementary and alternative
medicine”, “Critical Care”, “Critical Care and Intensive Care Medicine”, “Dermatology”, “Diabetes and
Metabolism”, “Embryology”, “Emergency Medicine”, “Endocrine and Autonomic Systems”, “Endocrinol-
ogy”, “Gastroenterology" "General Medicine”, “Genetics”, “Genetics (clinical)”, “Genetics(clinical)”, “Geri-
atrics and Gerontology”, “Gerontology”, “Health Informatics”, “Hematology”, “Hepatology”, “Histology”,
“Internal Medicine”, “Medical Laboratory Technology”, “Medicine (miscellaneous)”, “Monitoring”, “Nephrol-
ogy”, “Neurology”, “Neurology (clinical)”, “Nuclear Medicine and imaging”, “Oncology”, “Oncology
(nursing)”, “Ophthalmology" "Oral Surgery" "Otorhinolaryngology”, “Nutrition and Dietetics”, “Obstet-
rics and Gynecology”, “Pathology and Forensic Medicine”, “Pediatrics”, “Periodontics”, “Podiatry”, “Pul-
monary and Respiratory Medicine”, “Reproductive Medicine”, “Rheumatology”, “Surgery”, “Transplanta-
tion”, “Urology”, “Dentistry (miscellaneous)”, “General Dentistry”, “Orthodontics”

Neuroscience/Psychology:

‘Behavior and Systematics”, “Behavioral Neuroscience”, “Cellular and Molecular Neuroscience”, “Cog-
nitive Neuroscience”, “Decision Sciences (miscellaneous)”, “Developmental Neuroscience”, “Fundamen-
tals and skills”, “General Decision Sciences”, “General Neuroscience”, “Neuropsychology and Physiolog-
ical Psych”, “Applied Psychology”, “Biological Psychiatry”, “Clinical Psychology”, “Developmental and
Educational Psychology" "Experimental and Cognitive Psychology”, “General Psychology”, “Neuropsy-
chology and Physiological Psychology”, “Neuroscience (miscellaneous)”, “Psychiatric Mental Health”,
“Psychiatry and Mental health”, “Psychology (miscellaneous)”

Nursing/Paramedical:

“Advanced and Specialized Nursing”, “Critical Care Nursing”, “Emergency Nursing”, “General Nurs-
ing”, “LPN and LVN”, “Medical Surgical Nursing”, “Nursing (miscellaneous)”, “Occupational Therapy”,
“Perinatology”, “Perinatology and Child Health”, “Physical Therapy”, “Orthopedics and Sports Medicine”,
“Physiology”, “Optometry”, “Physiology (medical)”, “Rehabilitation”, “Sports Therapy and Rehabilita-
tion”, “and Child Health”

Pharmacology:

“Anesthesiology and Pain Medicine”, “Drug Discovery”, “Drug Guides”, “General Pharmacology”, “Phar-
maceutical Science”, “Pharmacology”, “Pharmacology (medical)”, “Pharmacology (nursing)”, “Pharmacy”,
“Toxicology”, “Toxicology and Mutagenesis”, “Toxicology and Pharmaceutics”, “Toxicology and Pharma-
ceutics (miscellaneous)”
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Physics and Astronomy:

“Acoustics and Ultrasonics”, “Aerospace Engineering”, “Astronomy and Astrophysics”, “Atomic and
Molecular Physics”, “Computational Mechanics”, “Condensed Matter Physics”, “General Physics and As-
tronomy”, “Mathematical Physics”, “Nuclear and High Energy Physics”, “Physics and Astronomy (mis-
cellaneous)”, “Radiation”, “Radiological and Ultrasound Technology”, “Radiology”, “Space and Planetary
Science”, “Statistical and Nonlinear Physics”, “Music”

Social Sciences:

“Anthropology”, “Archeology”, “Demography”, “Education”, “Family Practice”, “Gender Studies”, “Gen-
eral Social Sciences”, “Community and Home Care”, “Environmental and Occupational Health”, “General
Health Professions”, “Health”, “Health (social science)”, “Health Information Management”, “Health Pol-
icy”, “Health Professions (miscellaneous)”, “History”, “Industrial relations”, “Language and Linguistics”,
“Law”, “Linguistics and Language”, “Paleontology”, “Policy and Law”, “Political Science and Interna-
tional Relations”, “Public Administration”, “Public Health”, “Religious studies”, “Social Psychology”, “So-
cial Sciences (miscellaneous)”, “Sociology and Political Science”, “Tourism”, “Urban Studies”, “ethics and
legal aspects”, “Econometrics and Finance”, “Econometrics and Finance (miscellaneous)”, “Economics”,
“Economics and Econometrics”, “Finance”, “General Economics”

Others:

“Development”, “Issues”, “Life-span and Life-course Studies”, “Maternity and Midwifery”, “Reliability
and Quality”, “Risk”, “Safety”, “Safety Research”, “Stratigraphy”

A.3. Matching based on keywords

This Appendix describes the list of keywords and bigrams that we assigned to each subject. These words
are then used to match patents with subjects based on the “top terms” constructed by Google Patent and
associated with each patent publication (see Srebrovic, 2019).

Agriculture:

“Agriculture”, “Aquatic Science”, “Developmental Biology”, “Ecological Modeling”, “Ecology”, “Equine”,
“Evolution”, “Food Animals”, “Food Science”, “Forestry”, “Agricultural Sciences”, “Horticulture”, “Insect
Science”, “Biological Sciences”, “General Veterinary”, “Plant Science”, “Small Animals”, “Structural Bi-
ology”, “Veterinary”

Arts and Humanities:

“Art’, ’Humanities”, “Classics”, “Cultural Studies”, “History”, “Philosophy”, “Library”, “Information
Sciences”, “Literature”, “Museology”, “Speech”, “Visual Arts”, “Performing Arts”

Business:

“Accounting”, “Business”, “International Management”, “General Business”, “Ergonomics’ ,’Leader-
ship”, “Leisure”, “Hospitality Management”, “Management”, “Management Science”, “Operations Re-
search”, “Marketing”, “Media Technology”, “Organization”, “Organizational Behavior”, “Human Resource”,
“Planning”, “Strategy”

Chemistry:

“Analytical Chemistry”, “Bioengineering”, “Biochemistry”, “Biophysics”, “Catalysis”, “Chemical Engi-
neering”, “Chemistry”, “Clinical Biochemistry”, “Coating”, “Films’ ’Surface Chemistry”, “Electrochem-
istry”, “Environmental Chemistry”, “Filtration”, “Separation”, “Fluid Flow”, “Transfer Processes”, “Chem-
ical Engineering”, “Inorganic Chemistry”, “Materials Chemistry”, “Organic Chemistry”, “Polymers”, “Plas-
tics”, “Spectroscopy”
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Computer Science:

“Artificial Intelligence”, “AI”, “Computer Graphics”, “CAD”, “Computer-Aided Design”, “Computer
Networks”, “Computer Science”, “Computer Vision”, “Pattern Recognition”, “Modeling”, “Simulation”,
“Signal Processing”, “Software”, “Information Systems”

Environmental Science:

“Atmospheric”, “Earth Sciences”, “Conservation”, “Earth”, “Planetary”, “Ecological”, “Ecology”, “Eco-
nomic Geology”, “Environmental Engineering”, “Environmental Science,’Geography”, “Geology”, “Geo-
physics”, “Geotechnical Engineering”, “Engineering Geology”, “Planetary Change”, “Nature”, “Landscape
Conservation”, “Ocean Engineering”, “Oceanography”, “Pollution”, “Soil Science”, “Sustainability”, “Wa-
ter”

Energy:

“Energy”, “Power”, “Fuel”, “Geochemistry”, “Petrology”, “Nuclear Energy”, “Renewable Energy”

Engineering:

“Automotive”, “Biomedical”, “Architecture”, “Building”, “Construction”, “Civil Engineering”, “Struc-
tural Engineering”, “Control”, “Optimization”, “Electrical”, “Electronic”, “Hardware”, “Industrial”, “Man-
ufacturing”, “Instrumentation”, “Sensor”, “Surfaces”, “Interfaces”, “Transportation”, “Waste”

Immunology and Microbiology:

“Immunology”, “Allergy”, “Microbiology”, “Epidemiology”, “Genetics”, “Molecular Biology”, “Micro-
biology”, “Biotechnology”, “Cell Biology”, “Infectious”, “Molecular”, “Parasitology”, “Virology”

materials science:

“Biomaterials”, “Materials Science”, “Metals,’Alloys”, “Optical”, “Magnetic”

Mathematics:

“Algebra”, “Number Theory”, “Analysis”, “Applied Mathematics”, “Computational Mathematics”, “Com-
binatorics”, “Geometry”, “Topology”, “Logic”, “Numerical”, “Probability”, “Uncertainty”, “Statistics”,
“Probability”

Medicine/Dentistry:

“Aging”, “Anatomy”, “Diagnosis”, “Cancer”, “Cardiology”, “Cardiovascular Medicine”, “Chiroprac-
tics”, “Critical Care”, “Intensive Care”, “Dermatology”, “Diabetes”, “Metabolism”, “Embryology”, “Emer-
gency”, “Endocrine”, “Endocrinology”, “Gastroenterology”, “Genetics”, “Geriatrics”, “Gerontology”, “Health
Informatics”, “Hematology”, “Hepatology”, “Histology”, “Internal Medicine”, “Monitoring”, “Nephrol-
ogy”, “Neurology”, “Nuclear Medicine”, “Oncology”, “Ophthalmology”, “Oral Surgery”, “Otorhinolaryn-
gology”, “Nutrition”, “Dietetics”, “Pathology”, “Forensic Medicine”, “Pediatrics”, “Periodontics”, “Po-
diatry”, “Pulmonary”, “Respiratory Medicine”, “Reproductive Medicine”, “Rheumatology”, “Surgery”,
“Transplantation”, “Urology”, “Dentistry”, “Orthodontics”

Neuroscience/Psychology:

“Behavior”, “Systematics”, “Neuroscience”, “Cognitive”, “Decision”, “Neuropsychology”, “Physiolog-
ical Psych”, “Psychology”, “Psychiatry”, “Neuropsychology”, “Neuroscience”, “Pshychiatric”, “Mental
Health”

Nursing/Paramedical:

“Nursing”, “Occupational Therapy”, “Perinatology”, “Physical Therapy”, “Orthopedics”, “Sports Medicine”,
“Physiology”, “Optometry”, “Rehabilitation”, “Sports Therapy”
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Pharmacology:

“Anesthesiology”, “Pain”, “Drug”, “Pharmacology”, “Pharmaceutical Science”, “Pharmacology”, “Phar-
macy”, “Toxicology”, “Toxicology”, “Mutagenesis”, “Pharmaceutics”

Physics and Astronomy:

“Acoustics”, “Ultrasonics”, “Aerospace”, “Astronomy”, “Astrophysics”, “Atomic”, “Computational Me-
chanics”, “Condensed Matter”, “Radiation”, “Radiological”, “Ultrasound”, “Radiology”, “Space”, “Plane-
tary”, “Music”

Social Sciences:

“Anthropology”, “Archeology”, “Demography”, “Education”, “Family”, “Gender Studies”, “Industrial
relations”, “Language”, “Linguistics”, “Law”, “Paleontology”, “Policy and Law”, “Political Science”, “In-
ternational Relations”, “Public Administration”, “Public Health”, “Religious studies”, “Social Psychology”,
“Sociology”, “Tourism”, “Urban Studies”, “ethics”, “Econometrics”, “Finance”

APPENDIX B: ADDITIONAL RESULTS

Figure B1: Exposure is weighted by the size of laboratories
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Notes: This Figure replicates Figure 2 but the exposure A and its counterfactual B (see equation (2) are
calculated by taking the weighted sum of exposure across all laboratories, weighting by the number of
papers these laboratories published in each scientific field. See Section 3.1 for more details.

128

This content downloaded from 
������������90.60.44.105 on Sat, 27 Apr 2024 18:32:59 +00:00������������ 

All use subject to https://about.jstor.org/terms



Antonin Bergeaud and Arthur Guillouzouic

Fi
gu

re
B

2:
D

et
ai

le
d

ro
bu

st
ne

ss
re

su
lts

(a
)

A
ll

lin
ks

-.4-.3-.2-.10.1
Coef. Nurs

ing
/P

ara
med

ica
l

Mate
ria

ls 
Scie

nc
e

Phy
sic

s a
nd

 A
str

on
om

y

Ene
rgy

Com
pu

ter
 S

cie
nc

e

Soc
ial

 S
cie

nc
es Math

em
ati

cs

Env
iro

nm
en

tal
 S

cie
nc

e Eng
ine

eri
ng

Neu
ros

cie
nc

e/P
sy

ch
olo

gy

Im
mun

olo
gy

 an
d M

icr
ob

iol
og

y Che
mist

ry

Pha
rm

ac
olo

gy

Med
ici

ne
/D

en
tis

try

(b
)

D
is

t5
0

-.4-.20.2

Coef.

Mate
ria

ls 
Scie

nc
e

Nurs
ing

/P
ara

med
ica

l

Ene
rgy

Com
pu

ter
 S

cie
nc

e Math
em

ati
cs

Phy
sic

s a
nd

 A
str

on
om

y Agri
cu

ltu
re

Env
iro

nm
en

tal
 S

cie
nc

e Eng
ine

eri
ng Che

mist
ry

Im
mun

olo
gy

 an
d M

icr
ob

iol
og

y

Soc
ial

 S
cie

nc
es

Med
ici

ne
/D

en
tis

try

Neu
ros

cie
nc

e/P
sy

ch
olo

gy

(c
)

D
is

t1
50

-.4-.3-.2-.10.1

Coef.

Ene
rgy

Nurs
ing

/P
ara

med
ica

l

Mate
ria

ls 
Scie

nc
e

Com
pu

ter
 S

cie
nc

e

Phy
sic

s a
nd

 A
str

on
om

y

Math
em

ati
cs

Env
iro

nm
en

tal
 S

cie
nc

e Eng
ine

eri
ng Agri

cu
ltu

re Che
mist

ry

Med
ici

ne
/D

en
tis

try

Im
mun

olo
gy

 an
d M

icr
ob

iol
og

y

Pha
rm

ac
olo

gy

Neu
ros

cie
nc

e/P
sy

ch
olo

gy

(d
)

H
er

f3
0

-.3-.2-.10.1

Coef.

Math
em

ati
cs

Nurs
ing

/P
ara

med
ica

l

Mate
ria

ls 
Scie

nc
e

Phy
sic

s a
nd

 A
str

on
om

y

Com
pu

ter
 S

cie
nc

e
Ene

rgy

Env
iro

nm
en

tal
 S

cie
nc

e

Neu
ros

cie
nc

e/P
sy

ch
olo

gy Agri
cu

ltu
re Che

mist
ry Eng

ine
eri

ng

Im
mun

olo
gy

 an
d M

icr
ob

iol
og

y

Med
ici

ne
/D

en
tis

try

Pha
rm

ac
olo

gy

(e
)

H
er

f7
0

-.4-.20.2.4

Coef.

Com
pu

ter
 S

cie
nc

e

Phy
sic

s a
nd

 A
str

on
om

y

Env
iro

nm
en

tal
 S

cie
nc

e

Math
em

ati
cs

Mate
ria

ls 
Scie

nc
e Agri

cu
ltu

re Eng
ine

eri
ng

Neu
ros

cie
nc

e/P
sy

ch
olo

gy Che
mist

ry

Im
mun

olo
gy

 an
d M

icr
ob

iol
og

y

Med
ici

ne
/D

en
tis

try

Pha
rm

ac
olo

gy

Ene
rgy

Nurs
ing

/P
ara

med
ica

l

(f
)

In
cl

.7
2

-.4-.3-.2-.10

Coef.

Ene
rgy

Mate
ria

ls 
Scie

nc
e

Nurs
ing

/P
ara

med
ica

l

Neu
ros

cie
nc

e/P
sy

ch
olo

gy

Com
pu

ter
 S

cie
nc

e

Phy
sic

s a
nd

 A
str

on
om

y

Math
em

ati
cs

Im
mun

olo
gy

 an
d M

icr
ob

iol
og

y Agri
cu

ltu
re

Env
iro

nm
en

tal
 S

cie
nc

e

Med
ici

ne
/D

en
tis

try Che
mist

ry

Pha
rm

ac
olo

gy Eng
ine

eri
ng

(g
)

L
ab

si
ze

50

-.4-.3-.2-.10.1

Coef.

Soc
ial

 S
cie

nc
es

Ene
rgy

Mate
ria

ls 
Scie

nc
e

Nurs
ing

/P
ara

med
ica

l

Phy
sic

s a
nd

 A
str

on
om

y

Math
em

ati
cs

Com
pu

ter
 S

cie
nc

e

Env
iro

nm
en

tal
 S

cie
nc

e Eng
ine

eri
ng Agri

cu
ltu

re Che
mist

ry

Neu
ros

cie
nc

e/P
sy

ch
olo

gy

Im
mun

olo
gy

 an
d M

icr
ob

iol
og

y

Med
ici

ne
/D

en
tis

try

(h
)

M
in

D
is

t

-.3-.2-.10.1

Coef.

Math
em

ati
cs

Com
pu

ter
 S

cie
nc

e

Mate
ria

ls 
Scie

nc
e

Phy
sic

s a
nd

 A
str

on
om

y

Nurs
ing

/P
ara

med
ica

l

Ene
rgy Agri

cu
ltu

re

Env
iro

nm
en

tal
 S

cie
nc

e Eng
ine

eri
ng

Im
mun

olo
gy

 an
d M

icr
ob

iol
og

y

Neu
ros

cie
nc

e/P
sy

ch
olo

gy Che
mist

ry

Pha
rm

ac
olo

gy

Med
ici

ne
/D

en
tis

try

(i
)

R
em

ov
e

Pa
ri

s

-.4-.3-.2-.10.1

Coef.

Mate
ria

ls 
Scie

nc
e

Nurs
ing

/P
ara

med
ica

l

Ene
rgy

Com
pu

ter
 S

cie
nc

e

Math
em

ati
cs

Phy
sic

s a
nd

 A
str

on
om

y

Env
iro

nm
en

tal
 S

cie
nc

e Agri
cu

ltu
re

Im
mun

olo
gy

 an
d M

icr
ob

iol
og

y

Eng
ine

eri
ng Che

mist
ry

Neu
ros

cie
nc

e/P
sy

ch
olo

gy

Med
ici

ne
/D

en
tis

try

Pha
rm

ac
olo

gy

129

This content downloaded from 
������������90.60.44.105 on Sat, 27 Apr 2024 18:32:59 +00:00������������ 

All use subject to https://about.jstor.org/terms



Proximity of Firms to Scientific Production

TABLE B1
CENTRALITY

Subject Centrality

Closeness Bonacich Degree

Social Sciences 0.101 1.03 3.44
Nursing/Paramedical 0.118 1.08 7.36
Environmental Science 0.126 1.09 9.81
Mathematics 0.118 1.10 9.22
Neuroscience/Psychology 0.142 1.11 13.0
Medicine/Dentistry 0.166 1.16 35.1
Engineering 0.159 1.24 32.5
Agriculture 0.142 1.24 16.0
Energy 0.083 1.26 6.06
Pharmacology 0.158 1.26 23.1
Immunology and Microbiology 0.166 1.26 33.8
Computer Science 0.162 1.27 25.3
Materials Science 0.149 1.28 17.1
Physics and Astronomy 0.164 1.31 34.4
Chemistry 0.168 1.36 64.8

Notes: This table shows the average Closeness, Bonacich (Bonacich, 1987) and
degree centrality of the proximity measure proxl,i. The average is calculated across
all laboratories l of a same subject, weighted by the number of papers published in
the laboratory.
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Figure B3: Spillover and location of laboratories in the field of Materials Science

Notes: This map shows the location of laboratories in Materials Science as well as the difference between
the actual and counterfactual level of proximities by cities (standardized to range between 0 and 1). This
corresponds to a− b in equation (2). The size of the laboratories is proportional to their number of papers
published. Sources: scanR, patCit, Patstat.
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